Analogs of palmitoyl-CoA that are substrates for myristoyl-CoA:protein N-myristoyltransferase.

نویسندگان

  • D A Rudnick
  • T Lu
  • E Jackson-Machelski
  • J C Hernandez
  • Q Li
  • G W Gokel
  • J I Gordon
چکیده

Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p; EC 2.3.1.97) is an essential enzyme that is highly selective for myristoyl-CoA in vivo. It is unclear why myristate (C14:0), a rare cellular fatty acid, has been selected for this covalent protein modification over more abundant fatty acids such as palmitate (C16:0), nor is it obvious how the enzyme's acyl-CoA binding site is able to discriminate between these two fatty acids. Introduction of a cis double bond between C5 and C6 of palmitate [(Z)-5-hexadecenoic acid] or a triple bond between C4 and C5 or C6 and C7 (Y4- and Y6-hexadecenoic acids) yields compounds that, when converted to their CoA derivatives, approach the activity of myristoyl-CoA as Nmt1p substrates in vitro. Kinetic studies of 42 C12-C18 fatty acids containing triple bonds, para-phenylene, or a 2,5-furyl group, as well as cis and trans double bonds, suggest that the geometry of the enzyme's acyl-CoA binding site requires that the acyl chain of active substrates assume a bent conformation in the vicinity of C5. Moreover, the distance between C1 and the bend appears to be a critical determinant for optimal positioning of the acyl-CoA in this binding site so that peptide substrates can subsequently bind in the sequential ordered bi-bi reaction mechanism. Identification of active, conformationally restricted analogs of palmitate offers an opportunity to "convert" wild-type or mutant Nmts to palmitoyltransferases so that they can deliver these C16 fatty acids to critical N-myristoylproteins in vivo. nmt181p contains a Gly-451-->Asp mutation, which causes a marked reduction in the enzyme's affinity for myristoyl-CoA. Strains of S. cerevisiae containing nmt1-181 exhibit temperature-sensitive myristic acid auxotrophy: their complete growth arrest at 37 degrees C is relieved when the medium is supplemented with 500 microM C14:0 but not with C16:0. The CoA derivatives of (Z)-5-hexadecenoic and Y6-hexadecynoic acids are as active substrates for the mutant enzyme as myristoyl-CoA at 24 degrees C. However, unlike C16:0, they produce growth arrest of nmt181p-producing cells at this "permissive" temperature, suggesting that these C16 fatty acids do not allow expression of the biological functions of essential S. cerevisiae N-myristoylproteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The substrate specificity of Saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase. Polar probes of the enzyme's myristoyl-CoA recognition site.

Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p) is a monomeric enzyme that is essential for vegetative growth. Nmt1p catalyzes the co-translational transfer of myristate from CoA to the amino-terminal Gly of cellular proteins in an ordered Bi Bi reaction mechanism that initially involves binding of myristoyl-CoA to the apoenzyme. Forty one fatty acid analogs were s...

متن کامل

Analyzing the substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase by co-expressing it with mammalian G protein alpha subunits in Escherichia coli.

A dual plasmid system was used to examine the protein and acyl-CoA specificities of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (NMT) by co-expressing it in Escherichia coli with each of four homologous alpha subunits of the signal-transducing, heterotrimeric G proteins. Exogenous [3H]myristate was incorporated into rat Gi alpha 1 and rat Go alpha but not into bovine G...

متن کامل

Characterization and selective inhibition of myristoyl-CoA:protein N-myristoyltransferase from Trypanosoma brucei and Leishmania major.

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and...

متن کامل

The Substrate Specificity of Saccharomyces cereuisiae Myristoyl - CoA : Protein N - Myristoyltransferase

We have explored the acyl-CoA substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (NMT) by synthesizing 8 1 fatty acid analogs and surveying their activity in a coupled in vitro assay containing Pseudomonas acylCoA synthetase and Escherichia coli-derived yeast NMT. Single oxygen or sulfur substitution for C-3 through C-13 is well tolerated by both enzy...

متن کامل

The Candida albicans myristoyl-CoA:protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coli.

Myristoyl-CoA:protein N-myristoyltransferase (NMT) has recently been identified as a target for antiviral and antifungal therapy. Candida albicans is a dimorphic, asexual yeast that is a major cause of systemic fungal infections in immunosuppressed humans. Metabolic labeling studies indicate that C. albicans synthesizes one principal 20-kDa N-myristoyl-protein. The single copy C. albicans NMT g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 21  شماره 

صفحات  -

تاریخ انتشار 1992